Combined Path-following and Obstacle Avoidance Control of a Wheeled Robot
نویسندگان
چکیده
This paper proposes an algorithm that drives a unicycle type robot to a desired path, including obstacle avoidance capabilities. The path-following control design relies on Lyapunov theory, backstepping techniques and deals explicitly with vehicle dynamics. Furthermore, it overcomes the initial condition constraints present in a number of path-following control strategies described in the literature. This is done by controlling explicitly the rate of progression of a “virtual target” to be tracked along the path thus bypassing the problems that arise when the position of the path target point is simply defined as the closest point on the path. The obstacle avoidance part uses the Deformable Virtual Zone (DVZ) principle. This principle defines a safety zone around the vehicle in which the presence of an obstacle induces an “intrusion of information” that drives the vehicle reaction. The overall algorithm is combined with a guidance solution that embeds the path-following requirements in a desired intrusion information function, which steers the vehicle to the desired path while the DVZ ensures minimal contact with the obstacle, implicitly bypassing it. Simulation and experimental results illustrate the performance of the control system proposed. KEY WORDS—nonlinear control, underwater robotics, underactuated systems, path-following
منابع مشابه
Backward and forward path following control of a wheeled robot
A wheeled mobile robot is one of the most important types of mobile robots. A subcategory of these robots is wheeled robots towing trailer(s). Motion control problem, especially in backward motion is one of the challenging research topics in this field. In this article, a control algorithm for path-following problem of a tractor-trailer system is provided, which at the same time provides the ab...
متن کاملA guaranteed obstacle avoidance guidance system - The safe maneuvering zone
This paper presents a practical solution to the guidance of a unicycle type robot, including path following, obstacle avoidance and the respect of wheeled actuation saturation constraint, without planning procedure. These results are based on an extension of previous results on path following control including actuation saturation constraints. New solution for obstacle avoidance, with guarantee...
متن کاملA path planning strategy for obstacle avoidance
This paper presents an obstacle avoidance module dedicated to non-holonomic wheeled mobile robots. Chained system theory and deformable virtual zone principle are coupled to design an original framework based on path following formalism. The proposed strategy allows to correct the control output provided by a navigation module to preserve the robot security while assuring the navigation task. F...
متن کاملDesigning Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network
In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...
متن کاملReference Path Generation and Obstacle Avoidance for Autonomous Vehicles Based on Waypoints, Dubins Curves and Virtual Force Field Method
In this study, reference path generation based on waypoints, Dubins curves and obstacle avoidance are focused. The motion of a wheeled robot vehicle is modeled by following the principles of point mass approach. While motion planning is performed, the importance of obtaining the shortest distance between two target points is illustrated. Dubins curves and waypoints are used to construct an opti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 26 شماره
صفحات -
تاریخ انتشار 2007